If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4s^2-81=0
a = 4; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·4·(-81)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36}{2*4}=\frac{-36}{8} =-4+1/2 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36}{2*4}=\frac{36}{8} =4+1/2 $
| 32(9m−6)=20 | | 2a+2/2a+3=6/5 | | 7v-8=3v+28 | | 12.73+0.06(x+3)=13.48+-0.14x | | 5s-6=3s+24 | | 10(s-3)=-123 | | 3q+8=2q+20 | | 6(x+2)=7x+22-2x | | 0.9-0.28x=0.6x | | (x/15)=15x+(x/21) | | a^2+12a+3=0 | | t^2+5t-15=0 | | (7x-11)=(3x-41) | | 5t^2+10t-75=0 | | 5(k-3)=2(k+4)+4 | | 2(x+9)^2-50=0 | | 20(b+1)=6b-7 | | 20(b+1=6b-7 | | 7s-20=s+16 | | 12=5(8d-14) | | 3x²+8x+25=0 | | 7(t-2)+7=2(2t+2)+1 | | 3(3x+4)=4x+9 | | 6q-24=2q+20 | | 8(7m+8)=10 | | 8e+2=66 | | -0.42x+1.4=0 | | 10x+130⁰=180 | | 9x-23=-9 | | 0.4x+0.5=0.30x+1.20 | | x+5/2x=15/x-2 | | -3{x+2}=4{x-1} |